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2013 AFOSR SPRING REVIEW 
3001O PORTFOLIO OVERVIEW 

• The program aims to understand and control light sources exhibiting 
extreme bandwidth, peak power and temporal characteristics. 

• Portfolio sub-areas: optical frequency combs, high-field science, 
attosecond physics. 
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Applications of USP Lasers 

USP 
Lasers 

Secondary Radiation Sources 
generation of particle & photons 
 
• High power THz generation 
• Extreme ultraviolet 

lithography 
• Biological soft x-ray 

microscopy 
• Non-destructive evaluation 
• Medical imaging/therapy 

Metrology 
stabilized, ultra-wide bandwidth 
 
• Ultra-stable freq sources 
• Optical waveform synthesis 
• High precision spectroscopy 
• Frequency/time transfer 
• High-capacity comms 
• Coherent LIDAR 
• Optical clocks 
• Calibration 

Material Science 
ultrashort, high peak power 
 
• Surgery 
• Chemical analysis (LIBS) 
• Surface property 

modification 
• Non-equilibrium ablation 
• Micromachining 
• Ultrafast photochemistry 
• Attochemistry 

Propagation in media 
self-channeling 
 
• Remote sensing 
• Remote tagging 
• Directed energy 
• Electronic warfare 
• Countermeasures 
• Advanced sonar 

Particle Acceleration 
ultrahigh electric field gradients 
 
• Table-top GeV electron 

accelerators 
• MeV ion sources for 

imaging 
• Isotope production 
• Hadron tumor therapy 
• Proton-based fast 

ignition 
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Outline 

– Microresonator-based optical frequency combs 

– High peak power, ultrashort pulse laser processing 
of materials 

– Extreme ultraviolet (EUV) comb spectroscopy 

– High harmonic interferometry 

– Relativistic optics 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
Photo credits: DOI: 10.1038/nature05524, 
www.attoworld.de, E. Chowdhury (OSU) 
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Outline 

– Microresonator-based optical frequency combs 

– High peak power, ultrashort pulse laser processing 
of materials 

– Extreme ultraviolet (EUV) comb spectroscopy 

– High harmonic interferometry 

– Relativistic optics 
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Optical frequency combs: 
Frequency & time domains 

Source: Kippenberg et al., Science (2011); Diddams. DISTRIBUTION A: Approved for public release; distribution is unlimited 
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Metrological applications 
of optical frequency combs 

Source: Newbury, Nature Photonics (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited 
AFR~I 
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Combs in monolithic 
microresonators 

High-Q mm crystalline resonators 

top left doi: 10.1038/nphoton.2012.127 
right doi: 10.1103/physreva.84.053833 
bottom left doi: 10.1103/physrevlett.101.093902 
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Silicon nitride microrings 

doi: 10.1038/nphoton.2009.259 
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Source: Kippenberg et al., Science (2011) 
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Octave spanning bandwidths 

Source: Del’Haye, Phys. Rev. Lett. 107, 063901 (2011), 
Okawachi, Opt. Lett. 36, 3398 (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited 
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Why microresonators? 

Source: Kippenberg et al., Science (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited 
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Comb generation dynamics 

DISTRIBUTION A: Approved for public release; distribution is unlimited Graphics adapted from Herr, arXiv:1111.3071v1, 2011 
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Comb generation dynamics 
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Comb generation dynamics 

DISTRIBUTION A: Approved for public release; distribution is unlimited Graphics adapted from Herr, arXiv:1111.3071v1, 2011 

Step 3 
cascading 

w 

AFR~I 



15 

Comb generation dynamics 
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Comb generation dynamics 

DISTRIBUTION A: Approved for public release; distribution is unlimited Graphics adapted from Herr, arXiv:1111.3071v1, 2011 

Step 4b 
native 

spac1ng 

AFR~I 



17 

Comb generation dynamics 
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Comb generation dynamics 

DISTRIBUTION A: Approved for public release; distribution is unlimited Graphics adapted from Herr, arXiv:1111.3071v1, 2011 

Step 6 
mergmg 

o-s:.+s:. 
',, ',J 

AFR~I 



19 

(FY12 BRI) Microresonator-based 
optical frequency combs 

• Initiative aimed at exploring the fundamental 
physics of microresonator comb generation. 

• Six efforts exploring: 

– Spatio-temporal field mapping and 
control 

– Silicon-carbide microdisks 

– Silicon nitride resonators 

– Mid-IR microresonators 

– Time domain characterization 

– Dispersion tailoring via slotted 
waveguides 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
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Temporal and Spectral 
Comb Generation Dynamics 

Optical spectrum 

RF spectrum Temporal output 

Source: http://arxiv.org/abs/1211.1096v3 

PI: Alex Gaeta, Cornell 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
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Temporal and Spectral 
Comb Generation Dynamics 

Source: http://arxiv.org/abs/1211.1096v3 

PI: Alex Gaeta, Cornell 
Optical spectrum 

RF spectrum Temporal output 
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Temporal and Spectral 
Comb Generation Dynamics 

Transition to modelocking? 
Source: http://arxiv.org/abs/1211.1096v3 

PI: Alex Gaeta, Cornell 
Optical spectrum 

RF spectrum Temporal output 
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 99-GHz repetition rate 
 

 160-fs pulses 
 

Ultrashort Pulses at 99 GHz 

Source: http://arxiv.org/abs/1211.1096v3 

PI: Alex Gaeta, Cornell 
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Outline 

– Microresonator-based optical frequency combs 

– High peak power, ultrashort pulse laser processing 
of materials 

– Extreme ultraviolet (EUV) comb spectroscopy 

– High harmonic interferometry 

– Relativistic optics 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
Photo credits: DOI: 10.1038/nature05524, 
www.attoworld.de, E. Chowdhury (OSU) 



25 

Long laser pulse Ultrashort pulses 

Long laser pulse damages adjacent structures 
Ultrashort pulses  no collateral damage 

Source: C. Momma, A. Tunnermann et al., Opt. Commun. 129, 134 (1996) DISTRIBUTION A: Approved for public release; distribution is unlimited 



26 

Timescales of electron and lattice 
processes in laser-excited solids 

Time-dependent 
processes in materials 

Source: Sundaram, Nat Mater 1, 217 (2002), 
Mao, Applied Physics A 79, 1695 (2004). 

10 – 100 fs 

Multi- 
photon 

Tunneling 

Avalanche 

Excitation 
mechanisms 
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High peak power, ultrashort pulse 
laser processing of materials 

• Ultrashort laser pulses open up novel 
possibilities and mechanisms for laser-solid 
interactions. 

• Demonstrated femtosecond laser processing 
and surface texturing techniques to engineer 
surface structures & properties (e.g. darkened 
& colorized metals, hydrophilic & hydrophobic 
surfaces). 

Colorized metals 

PI: Chunlei Guo, U of Rochester 

Hydrophilic Hydrophobic 
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(FY13 BRI) High peak power, ultrashort 
pulse laser processing of materials 

• Initiative aimed at developing a fundamental 
understanding of intense field laser 
ablation/damage in the femtosecond regime. 

• Three multi-PI efforts exploring: 
– Dynamics of ionization 
– Fundamental dynamics of laser ablation 
– Defect states in multi-pulse interaction 
– Effect of structures on laser damage 
– First principle-based models, non-

adiabatic quantum MD, classical MD 
– Vary λ = 400 nm – 4 µm, τ = 5 – 1000 fs 
– Complex beam shapes (Bessel, Airy, 

vortex, SSTF beams) 
– Novel laser-matter interaction geometries 

(confined microexplosions, SSTF 
excitation, few-cycle pulses) 
 
 
 

SSTF focus 

Gratings 

Classical MD 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
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Outline 

– Microresonator-based optical frequency combs 

– High peak power, ultrashort pulse laser processing 
of materials 

– Extreme ultraviolet (EUV) comb spectroscopy 

– High harmonic interferometry 

– Relativistic optics 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
Photo credits: DOI: 10.1038/nature05524, 
www.attoworld.de, E. Chowdhury (OSU) 
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High Harmonic Generation (HHG) 

Microscopic single-atom 
physics of HHG 

Macroscopic phase-matched 
harmonic emission 

Source: Popmintchev, Nat Photonics 4, 822 (2010), 
Popmintchev, Science 336, 1287 (2012) DISTRIBUTION A: Approved for public release; distribution is unlimited 

2D electron wavepacket 
quantum simulation 

Source: Luis Plaja, U Salamanca  
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Direct Frequency Comb Spectroscopy 
in the Extreme Ultraviolet 

PI: Jun Ye, U of Colorado 

Source: Cingoz, Nature 482, 68 (2012) 

Towards dual comb 
EUV spectroscopy 

COMB 1 

COMB 2 

Beat 
notes! 

119 nm 97 nm 82 nm 47 nm 71 nm 
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Outline 

– Microresonator-based optical frequency combs 

– High peak power, ultrashort pulse laser processing 
of materials 

– Extreme ultraviolet (EUV) comb spectroscopy 

– High harmonic interferometry 

– Relativistic optics 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
Photo credits: DOI: 10.1038/nature05524, 
www.attoworld.de, E. Chowdhury (OSU) 
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High Harmonic Interferometry to 
follow chemical reactions 

PI: Paul Corkum, NRC 

Source: Worner, Nature 466, 604 (2010). 

Br2 

Br + Br 
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Conical intersections drive the 
chemistry of complex molecules 

Source: Paul Corkum 

PI: Paul Corkum, NRC 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
AFR~I 
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Conical Intersection 
Dynamics in NO2 

Source: Wörner, Science 334, 208 (2011) 

PI: Paul Corkum, NRC 
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Electronic dynamics near 
a conical intersection 

Source: Wörner, Science 334, 208 (2011) 

PI: Paul Corkum, NRC 
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Outline 

– Microresonator-based optical frequency combs 

– High peak power, ultrashort pulse laser processing 
of materials 

– Extreme ultraviolet (EUV) comb spectroscopy 

– High harmonic interferometry 

– Relativistic optics 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
Photo credits: DOI: 10.1038/nature05524, 
www.attoworld.de, E. Chowdhury (OSU) 
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Progress in peak intensity 

• Over the last two decades, a 6 order of magnitude increase in achieved 
focused intensities in table-top systems.  

 Source: CUOS website 

2x1022 

Relativistic ions 
Nonlinearity of vacuum 
 
GeV e acceleration 
e+e- production 
Nuclear reactions 
 
Relativistic plasmas 
Hard x-ray generation 
 
Tunnel ionization 
High temperature plasma formation 
Bright x-ray generation 
 
Nonperturbative atomic physics 
High order nonlinear optics 
 
Perturbative atomic physics 
Nonlinear Optics 
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Petawatt class university lasers 

University of Texas, 1.1 PW University of Nebraska, 0.7 PW 

University of Michigan, 0.3 PW Ohio State University, 0.5 PW 

July 16, 2012 
First Light 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
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Laser-driven x-ray sources 

• Understanding laser-generated 
electron beam characteristics is 
the key to advancing x-ray 
sources. 

 

• PIC simulations of high intensity 
short pulse laser interacting with 
structured targets yields an 
enhancement in the number and 
energy of hot electron. 

 

• Monte Carlo simulations using the 
electron beam source from PIC 
show enhancement of x-ray 
production. 

DISTRIBUTION A: Approved for public release; distribution is unlimited 

PI: Kramer Akli, OSU 

Hot electron generation  

Enhanced x-ray production 

Picture: Courtesy of Kwei-‐Yu Chu and 
Lawrence Livermore National Laboratory 
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Laser-driven x-rays generation 
(0.1 – 10 MeV) 

• Scattering from a 300 MeV electron 
beam can Doppler shift a 1-eV energy 
laser photon to 1.5 MeV energy. 

• Demonstrated > 710 MeV electron beams 
with no detectable low-energy 
background. 

PI: Donald Umstadter, U of Nebraska 

Super 
Sonic     
Nozzle 

E-Beam 

Scattering 
Laser  Pulse 

Experimental geometry 
for generating x-rays via 
Thomson scattering 

> 710 MeV 
electrons 

Energy tunability from 0.1 – 0.8 GeV. 
Monoenergetic: ΔE/E ~ 10 % 

Low angular divergence: 1-5 mrad 
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Laser-driven x-rays generation 
(0.1 – 10 MeV) 

0.5 inch thick steel plate 

PI: Donald Umstadter, U of Nebraska 

DISTRIBUTION A: Approved for public release; distribution is unlimited 
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Brighter, more energetic and tunable 
than conventional synchrotrons 

UNL 2012 

Hartemann, F. V. et al. High-energy scaling 
of Compton scattering light sources. Physical 
Review Special Topics - Accelerators and 
Beams 8, 100702 (2005). 

PI: Donald Umstadter, U of Nebraska 
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(FY14 BRI) Laser-matter interactions in 
the relativistic optics regime 

• Laser-driven electron acceleration 
– Laser Wakefield Acceleration: Electrons 

are accelerated to gigaelectronvolt (GeV) 
energies over centimeters distances 

– Direct Light Acceleration 
 

• Ion acceleration 
– Protons and ions are accelerated to 

megaelectronvolt (MeV) energies by a 
mechanism known as ‘target normal 
sheath acceleration’ (TNSA) 
 

• X-ray radiation sources 
– keV to MeV x-rays via non‐linear Thomson 

Scattering 
– Kα monochromatic emission 
– Bremsstrahlung broadband radiation 

 
• Neutron sources 

– Protons incident on a secondary target 
(e.g. Lithium) can produce MeV neutrons 
 

• QED physics  
DISTRIBUTION A: Approved for public release; distribution is unlimited 

Electron density distribution and generation of quasi-
monoenergetic electron bunches observed in PIC simulations. 

Target Sheath Normal Acceleration: Laser acceleration of 
protons from the back side of a microstructured target. 
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Summary and outlook 

Optical frequency combs 
ultra-wide bandwidths 
 
• Spectral coverage to exceed an 

octave with high power/comb. 
• Coherence across EUV-LWIR. 
• Novel resonator designs (e.g. 

micro-resonator based). 
• Ultra-broadband pulse shaping. 
• … 

Attosecond science 
ultrashort pulsewidths 
 
• Efficient, high-flux generation. 
• Pump-probe methods. 
• Probe atoms/molecules & 

condensed matter systems. 
• Attosecond pulse propagation. 
• Novel attosecond experiments. 
• Fundamental interpretations of 

attosecond measurements. 
• … 

The program aims to understand 
and control light sources exhibiting 
extreme temporal, bandwidth and 
peak power characteristics. 

High-field laser physics 
high peak powers 
 
• Laser-solid interactions. 
• Fs propagation in media. 
• Sources of secondary photons. 
• Compact particle accelerators. 
• High peak power laser 

architectures. 
• High repetition rates. 
• New wavelengths of operation. 
• … 
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